Calentamiento Global


También conocido como cambio climático por la modificación del clima con respecto al historial climático de una escala global o regional; estos cambios se producen en muy diversas escalas de tiempo y sobre todos los parámetros climáticos como lo son temperatura, precipitaciones, nubosidad, etcétera. Todo esto es debido a causas naturales y la acción de la humanidad.

Este término suele usarse de una forma poco apropiada para hacer referencia tan sólo a los cambios climáticos que suceden en el presente, utilizándolo como un sinónimo del calentamiento global. Como la mayoría de las veces o constantemente por causas naturales se lo denomina también variabilidad natural del clima y al ser por causa y origen de los seres humanos se usa también la expresión cambio climático antropogénico.

El cambio climático implica cambios en otras variables como las lluvias globales y sus patrones, la cobertura de nubes y todos los demás elementos del sistema atmosférica, ya q la complejidad del problema y sus múltiples interacciones hacen una única manera de evaluar estos cambios sea mediante el uso de modelos computacionales que intentan simular la física de la atmósfera y de los océanos y que tienen una precisión muy limitada debido al desconocimiento actual del funcionamiento de la atmósfera.


Causas de los cambios climáticos

Temperatura en la superficie terrestre.

El clima es un promedio del tiempo atmosférico, de una escala de tiempo dada. Sobre el clima influyen muchos fenómenos; consecuentemente el cambios en estos fenómenos provocan cambios climáticos, uno de estos cambios podría ser la emisión del Sol, en la composición de la atmósfera, en la disposición de los continentes, en las corrientes marinas o en la órbita de la Tierra puede modificar la distribución de energía y el balance radiactivo terrestre, alterando así profundamente el clima planetario.

Estas influencias se pueden clasificar en externas e internas a la Tierra. Las externas también reciben el nombre de forzamientos dado que normalmente actúan de forma sistemática sobre el clima, aunque también los hay aleatorios como es el caso de los impactos de meteoritos, la influencia humana sobre el clima en muchos casos se considera forzamiento externo ya que su influencia es más sistemática que caótica pero también es cierto que el Homo sapiens pertenece a la propia biosfera terrestre pudiéndose considerar también como forzamientos internos según el criterio que se use.


Variaciones solares

Variaciones de la luminosidad solar a lo largo del ciclo de las manchas solares.

La temperatura media de la Tierra depende, en gran medida, del flujo de radiación solar que recibe. Sin embargo, debido a que ese aporte de energía apenas varía en el tiempo, no se considera que sea una contribución importante para la variabilidad climática.

Esto sucede porque el Sol es una estrella de tipo G en fase de secuencia principal, resultando muy estable, el flujo de radiación es el motor de los fenómenos atmosféricos ya que aporta la energía necesaria a la atmósfera para que éstos se produzcan.

El Sol aumenta su luminosidad a razón de un 10 % cada 1.000 millones de años por debido a este fenómeno, en la Tierra primitiva que sustentó el nacimiento de la vida, hace 3.800 millones de años, el brillo del Sol era un 70 % del actual.


Variaciones orbitales

La luminosidad solar se mantiene prácticamente constante a lo largo de millones de años, no ocurre lo mismo con la órbita terrestre, esta oscila periódicamente, haciendo que la cantidad media de radiación que recibe cada hemisferio fluctúe a lo largo del tiempo, y estas variaciones provocan las pulsaciones glaciares a modo de veranos e inviernos de largo período.

Mejor conocido como llamados períodos glaciales e interglaciares. Hay tres factores que contribuyen a modificar las características orbitales haciendo que la insolación media en uno y otro hemisferio varíe aunque no lo haga el flujo de radiación global.


Impactos de meteoritos

En raras ocasiones ocurren eventos de tipo catastrófico que cambian la faz de la Tierra para siempre. El último de tales acontecimientos catastróficos sucedió hace 65 millones de años. Se trata de los impactos de meteoritos de gran tamaño. Es indudable que tales fenómenos pueden provocar un efecto devastador sobre el clima al liberar grandes cantidades de CO2, polvo y cenizas a la atmósfera debido a la quema de grandes extensiones boscosas. De la misma forma, tales sucesos podrían intensificar la actividad volcánica en ciertas regiones. En el suceso de Chichulub (en Yucatán, México) hay quien relaciona el período de fuertes erupciones en volcanes de la India con el hecho de que este continente se sitúe cerca de las antípodas del cráter de impacto. Tras un impacto suficientemente poderoso la atmósfera cambiaría rápidamente, al igual que la actividad geológica del planeta e, incluso, sus características orbitales.


Influencias internas

La deriva continental

Pangea

La Tierra ha sufrido muchos cambios desde su origen hace 4.600 millones de años. Hace 225 millones todos los continentes estaban unidos, formando lo que se conoce como Pangea, y había un océano universal llamado Panthalassa.

Esta disposición favoreció el aumento de las corrientes oceánicas y provocó que la diferencia de temperatura entre el Ecuador y el Polo fuera muchísimo menor que en la actualidad. La tectónica de placas ha separado los continentes y los ha puesto en la situación actual.

El Océano Atlántico se ha ido formando desde hace 200 millones de años. La deriva continental es un proceso sumamente lento ya que la posición de los continentes fija el comportamiento del clima durante millones de años, hay que tener en cuenta dos aspectos por un lado, las latitudes en las que se concentra la masa continental: si las masas continentales están situadas en latitudes bajas habrá pocos glaciares continentales y temperaturas medias menos extremas.


La composición atmosférica

La atmósfera primitiva, cuya composición era parecida a la nebulosa inicial, perdió sus componentes más ligeros, el hidrógeno diatómico (H2) y el helio (He), para ser sustituidos por gases procedentes de las emisiones volcánicas del planeta u sus derivados, especialmente dióxido de carbono (CO2), dando lugar a una atmósfera de segunda generación. En esta atmósfera son importantes los efectos de los gases de invernadero emitidos de forma natural en volcanes. Por otro lado, la cantidad de óxidos de azufre y otros aerosoles emitidos por los volcanes contribuyen a lo contrario, a enfriar la Tierra. Del equilibrio entre ambos efectos resulta un balance radiativo determinado.


Las corrientes oceánicas

Temperatura del agua en la Corriente del Golfo.

Las corrientes oceánicas, o marinas, son un factor regulador del clima que actúa como moderador, suavizando las temperaturas de regiones como Europa. El ejemplo más claro es la corriente termohalina que, ayudada por la diferencia de temperaturas y de salinidad, se hunde en el Atlántico Norte.


El campo magnético terrestre

De la misma forma que el viento solar puede afectar al clima de forma directa, las variaciones en el campo magnético terrestre pueden afectarlo de manera indirecta ya que detiene o no las partículas emitidas por el Sol. Se ha comprobado que en épocas pasadas hubo inversiones de polaridad y grandes variaciones en su intensidad, llegando a estar casi anulado en algunos momentos, se sabe también que los polos magnéticos, si bien tienden a encontrarse próximos a los polos geográficos, en algunas ocasiones se han aproximado al Ecuador. Estos sucesos tuvieron que influir en la manera en la que el viento solar llegaba a la atmósfera terrestre.


Los efectos antropogénicos

El ser humano es hoy uno de los agentes climáticos de importancia, incorporándose a la lista hace relativamente poco tiempo, su influencia comenzó con la deforestación de bosques para convertirlos en tierras de cultivo y pastoreo, pero en la actualidad su influencia es mucho mayor al producir la emisión abundante de gases que producen un efecto invernadero: CO2 en fábricas y medios de transporte y metano en granjas de ganadería intensiva y arrozales. Actualmente tanto las emisiones de gases como la deforestación se han incrementado hasta tal nivel que parece difícil que se reduzcan a corto y medio plazo, por las implicaciones técnicas y económicas de las actividades involucradas.


Retroalimentaciones y factores moderadores

La Tierra vista desde el Apolo 17.

Muchos de los cambios climáticos importantes se dan por pequeños desencadenantes causados por los factores que se han citado, ya sean forzamientos sistemáticos o sucesos imprevistos. Dichos desencadenantes pueden formar un mecanismo que se refuerza a sí mismo amplificando el efecto. Asimismo, la Tierra puede responder con mecanismos moderadores o con los dos fenómenos a la vez.


Cambios climáticos en el pasado

Los estudios del clima pasado también conocido como “paleo clima” se realizan estudiando los registros fósiles, las acumulaciones de sedimentos en los lechos marinos, las burbujas de aire capturadas en los glaciares, las marcas erosivas en las rocas y las marcas de crecimiento de los árboles; con base en todos estos datos se ha podido confeccionar una historia climática reciente relativamente precisa, y una historia climática prehistórica con no tan buena precisión. A medida que se retrocede en el tiempo los datos se reducen y llegado un punto la climatología se sirve solo de modelos de predicción futura y pasada.


La paradoja del Sol débil

A partir de los modelos de evolución estelar se puede calcular con relativa precisión la variación del brillo solar a largo plazo, por lo tanto se sabe que, en los primeros momentos de la existencia de la Tierra, el Sol emitía el 70% de la energía actual y la temperatura de equilibrio era de -41 ºC. Sin embargo, hay constancia de la existencia de océanos y de vida desde hace 3.800 millones de años, por lo que la paradoja del Sol débil sólo puede explicarse por una atmósfera con mucha mayor concentración de CO2 que la actual y con un efecto invernadero más grande.


El efecto invernadero en el pasado

Variaciones en la concentración de dióxido de carbono.

La atmósfera influye fundamentalmente en el clima; la temperatura en la Tierra sería de -20 ºC, pero la atmósfera se comporta de manera diferente según la longitud de onda de la radiación, el Sol por su alta temperatura emite radiación a un máximo de 0,48 micrómetros. El resultado es que la atmósfera se calienta y devuelve a la tierra parte de esa energía por lo que la temperatura superficial es de unos 15ºC, y dista mucho del valor de equilibrio sin atmósfera. A este fenómeno se le llama el efecto invernadero y el CO2 y el H2O son los gases responsables de ello. Gracias al efecto invernadero podemos vivir. Para ver un cálculo pormenorizado sobre esta cuestión ir ha: Balance radiactivo terrestre.


Aparece la vida en la Tierra

Con la aparición de las cianobacterias, en la Tierra se puso en marcha la fotosíntesis oxigena. Las algas, y luego también las plantas, absorben y fijan CO2, y emiten O2, su acumulación en la atmósfera favoreció la aparición de los organismos aerobios que lo usan para respirar y devuelven CO2. El O2 en una atmósfera es el resultado de un proceso vivo y no al revés. Se dice frecuentemente que los bosques y selvas son los "pulmones de la Tierra", aunque esto recientemente se ha puesto en duda ya que varios estudios afirman que absorben la misma cantidad de gas que emiten por que quizá solo serían meros intercambiadores de esos gases; en cualquier caso, en el proceso de creación de estos grandes ecosistemas forestales ocurre una abundante fijación del carbono que sí contribuye apreciablemente a la reducción de los niveles atmosféricos de CO2. Actualmente los bosques tropicales ocupan la región ecuatorial del planeta y entre el Ecuador y el Polo hay una diferencia térmica de 50 ºC. Hace 65 millones de años la temperatura era 8 °C superior a la actual y la diferencia térmica entre el Ecuador y el Polo era de unos pocos grados. Todo el planeta tenía un clima tropical y apto para los señores de la Tierra de esta época: los dinosaurios. Un cataclismo cometario acabó con ellos. La extinción masiva de animales se ha producido periódicamente en la historia de la Tierra.


Las glaciaciones del Pleistoceno

El hombre moderno apareció hace unos tres millones de años. Desde hace unos dos millones, la tierra ha sufrido períodos glaciares donde gran parte de Norteamérica, Sudamérica y Europa quedaron cubiertas bajo gruesas capas de hielo durante muchos años. Luego rápidamente los hielos desaparecieron y dieron lugar a un período interglaciar en el cual vivimos, en el proceso se repite cada cien mil años aproximadamente. La última época glaciar acabó hace unos quince mil años y dio lugar a un cambio fundamental en los hábitos del hombre con el descubrimiento de la agricultura y de la ganadería. La mejora de las condiciones térmicas provocó el paso del Paleolítico al Neolítico hace unos cinco mil años.


El cambio climático actual

Combustibles fósiles y calentamiento global

A finales del siglo XVII el hombre empezó a utilizar combustibles fósiles que la tierra había acumulado en el subsuelo durante su historia geológica. La quema de petróleo, carbón y gas natural ha causado un aumento del CO2 en la atmósfera que últimamente es de 1,4 ppm al año y produce el consiguiente aumento de la temperatura. Se estima que desde que el hombre mide la temperatura hace unos 150 años ésta ha aumentado 0,5 ºC y se prevé un aumento de 1 ºC en el 2020 y de 2ºC en el 2050.

A principios del siglo XXI el calentamiento global parece irrefutable, a pesar de que las estaciones meteorológicas en las grandes ciudades han pasado de estar en la periferia de la ciudad, al centro de ésta y el efecto de isla urbana también ha influido en el aumento observado. Los últimos años del siglo XX se caracterizaron por poseer temperaturas medias que son siempre las más altas del siglo.


Efecto invernadero

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de la atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con el actual consenso científico, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.

Este fenómeno evita que la energía solar recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero.


Balance radiactivo terrestre

Representación esquemática simplificada de los flujos de energía entre el espacio, la atmósfera de la Tierra y la superficie de la Tierra.

La imagen muestra cómo estos flujos se combinan para mantener caliente la superficie del planeta creando el efecto invernadero. Si el calor total recibido en la superficie fuera 235 W/m2, entonces la temperatura de equilibrio de la superficie de la Tierra sería de -18 °C En cambio, la atmósfera de la Tierra recicla el calor que viene de la superficie y entrega unos 324 W/m2 adicionales que elevan la temperatura media de la superficie a aproximadamente +14 °C.

El efecto invernadero es un factor esencial del clima de la Tierra. Bajo condiciones de equilibrio, la cantidad total de energía que entra en el sistema por la radiación solar se compensará exactamente con la cantidad de energía radiada al espacio, permitiendo a la Tierra mantener una temperatura media constante en el tiempo.

Todos los cuerpos, por el hecho de estar a una cierta temperatura superior al cero absoluto, emiten una radiación electromagnética. La radiación electromagnética se traslada sin obstáculos a través del vacío, pero puede hacerlo también a través de medios materiales con ciertas restricciones. Las radiaciones de longitud de onda más corta son más penetrantes, como ilustra el comportamiento de los rayos X cuando se los compara con la luz visible. También depende de las propiedades del medio material, especialmente del parámetro denominado transmitancia, que se refiere a la opacidad de un material dado para radiación de una determinada longitud de onda.


Radiación recibida del Sol

El Sol es el responsable de casi toda la energía alcanzada desde el exterior a la superficie de la Tierra. El Sol emite radiación que se puede considerar de onda corta, centrada en torno a la parte del espectro a la que son sensibles los ojos, y que llamamos por ello luz visible; incluye también dosis significativas de radiación ultravioleta, de longitud de onda menor que la visible. La parte ultravioleta es absorbida en buena parte por el ozono y otros gases en la alta atmósfera, contribuyendo a su calentamiento, mientras que la luz visible traspasa la atmósfera casi sin problemas. La Tierra intercepta una energía del Sol que en la parte superior de la atmósfera vale 1366 W/m2, sin embargo sólo intercepta energía la sección de la Tierra orientada hacia el Sol, mientras que la irradia a toda la superficie terrestre, así que hay que dividir la constante solar entre 4, lo que lleva a 342 W/m2. El balance y equilibrio, en la vida terrestre se halla afectado por la forma cambiante del mismo.


Efecto invernadero

La Tierra, como todo cuerpo caliente, emite radiación, pero al ser su temperatura mucho menor que la solar, emite radiación infrarroja de una longitud de onda mucho más larga que la que recibe. Sin embargo, no toda esta radiación vuelve al espacio, ya que los gases de efecto invernadero absorben la mayor parte.

La atmósfera transfiere la energía así recibida tanto hacia el espacio “37,5%” como hacia la superficie de la Tierra “62,5%”. Ello representa 324 W/m2, casi la misma cantidad de energía que la proveniente del Sol, aún sin albedo. De este modo, el equilibrio térmico se establece a una temperatura superior a la que se obtendría sin este efecto. La importancia de los efectos de absorción y emisión de radiación en la atmósfera son fundamentales para el desarrollo de la vida tal y como se conoce. De hecho, si no existiera este efecto la temperatura media de la superficie de la Tierra sería de unos -22 ºC, y gracias al efecto invernadero es de unos 14ºC.

En zonas de la Tierra cuya atmósfera tiene poca proporción de gases de efecto invernadero “especialmente de vapor de agua”, como en los grandes desiertos, las fluctuaciones de temperatura entre el día y la noche “emisión hacia el cielo nocturno” son muy grandes.


Gases de efecto invernadero y actividad industrial

Evolución de las emisiones de dióxido de carbono, en millones de toneladas por año, discriminada por región.

Los denominados gases de efecto invernadero o gases invernadero, responsables del efecto descrito, son:

Si bien todos ellos salvo “los CFCs” son naturales, en tanto que ya existían en la atmósfera antes de la aparición del hombre, desde la Revolución industrial y debido principalmente al uso intensivo de los combustibles fósiles en las actividades industriales y el transporte, se han producido sensibles incrementos en las cantidades de óxidos de nitrógeno y dióxido de carbono emitidas a la atmósfera, con el agravante de que otras actividades humanas, como la deforestación, han limitado la capacidad regenerativa de la atmósfera para eliminar el dióxido de carbono, principal responsable del efecto invernadero.

Estos cambios causan un paulatino incremento de la temperatura terrestre, el llamado cambio climático o calentamiento global que, a su vez, es origen de otros problemas ambientales:

Variación de la temperatura global y de la concentración de dióxido de carbono presente en el aire en los últimos 1000 años.

  • Desertización y sequías, que causan hambrunas
  • Deforestación, que aumenta aún más el cambio
  • Inundaciones
  • Fusión de los casquetes polares y otros glaciares, que causa un ascenso del nivel del mar, sumergiendo zonas costeras. Sólo influye en dicha variación el hielo apoyado en suelo firme, ya que el hielo que flota en el mar no aumenta el nivel del agua.
  • Destrucción de ecosistemas
  • Además, el efecto invernadero es uno de los principales factores que provocan el calentamiento global de la Tierra, debido a la acumulación de los llamados gases invernadero CO2, H2O, O3, CH4 y CFCs en la atmósfera.